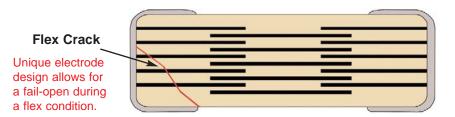

# FlexDesign SAMPLE KIT

Product-ID: FD-Kemet






## Fail-Safe Floating Electrode MLCC / FE-CAP / X7R Dielectric

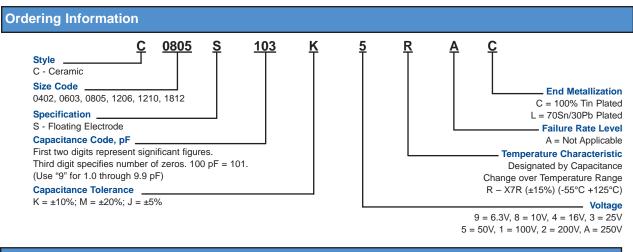


#### **Product Description**

The FE-CAP is a SMD MLCC which utilizes a floating internal electrode design, wherein the electrodes are configured to form multiple capacitors in series within a single MLCC package. This not only yields improved voltage and ESD performance over standard designs, but also mitigates the risk of low-IR or short-circuit failures that can occur due to board flex. Combined with the stability of an X7R dielectric, the FE-CAP complements KEMET's Open Mode Devices by providing a fail-safe design optimized for low- to mid-range capacitance values.

#### **FE-CAP Internal Design**




| Dimensio         | Dimensions – Millimeters (Inches) |                          |                           |                           |                 |  |  |  |  |  |  |  |  |
|------------------|-----------------------------------|--------------------------|---------------------------|---------------------------|-----------------|--|--|--|--|--|--|--|--|
| EIA Size<br>Code | Metric Size<br>Code               | L<br>Length              | W<br>Width                | B<br>Bandwidth            | S<br>Separation |  |  |  |  |  |  |  |  |
| 0402             | 1005                              | 1.0 (.04) ± 0.05 (.002)  | 0.5 (.02) ± 0.05 (.002)   | 0.20 (.008) -0.40 (.016)  | 0.30 (.012)     |  |  |  |  |  |  |  |  |
| 0603             | 1608                              | 1.6 (.063) ± 0.15 (.006) | 0.8 (.032) ± 0.15 (.006)  | 0.35 (.014) ± 0.15 (.006) | 0.70 (.028)     |  |  |  |  |  |  |  |  |
| 0805             | 2012                              | 2.0 (.079) ± 0.20 (.008) | 1.25 (.049) ± 0.20 (.008) | 0.05 (.02) ± 0.25 (.010)  | 0.75 (.030)     |  |  |  |  |  |  |  |  |
| 1206             | 3216                              | 3.2 (.126) ± 0.20 (.008) | 1.6 (.063) ± 0.20 (.008)  | 0.50 (.02) ± .25 (.010)   | N/A             |  |  |  |  |  |  |  |  |
| 1210             | 3225                              | 3.2 (.126) ± 0.20 (.008) | 2.5 (.098) ± 0.20 (.008)  | 0.50 (.02) ± .25 (.010)   | N/A             |  |  |  |  |  |  |  |  |
| 1812             | 4532                              | 4.5 (.177) ± 0.30 (.012) | 3.2 (.126 ) ± 0.30 (.012) | 0.60 (.024) ± .35 (.014)  | N/A             |  |  |  |  |  |  |  |  |

Refer to standard thickness dimensions and table located in the F3102 SMT catalog on pages 73, 74, and 77.

RoHS Compliant



| CAP    | CAP  | CAP  |     | 0              | 40 | 2  |    |           |           | 0        | 60       | 3         |          |           |     |           |           | 08       | 305       |           |     |     |           |    |           | 12 | 06 |     |     |     |     |    |          | 12        | 210      | )          |           |           |    | 1;        | 81: | 2         | ٦         |
|--------|------|------|-----|----------------|----|----|----|-----------|-----------|----------|----------|-----------|----------|-----------|-----|-----------|-----------|----------|-----------|-----------|-----|-----|-----------|----|-----------|----|----|-----|-----|-----|-----|----|----------|-----------|----------|------------|-----------|-----------|----|-----------|-----|-----------|-----------|
| (pF)   |      | CODE | 6.3 | 10             | 16 | 25 | 50 | 6.3       | 10        | 16       | 25       | 50        | 100      | 200       | 6.3 | 10        | 16        | 25       | 50        | 100       | 200 | 250 | 6.3       | 10 | 16        | 25 | 50 | 100 | 200 | 250 | 6.3 | 10 | 16       | 25        | 50       | 100        | 200       | 250       | 25 | 50        | 100 | 200       | 250       |
| 150    | 0.15 | 151  |     |                |    |    |    | Η         | $\square$ | $\vdash$ | ┢        | ⊢         | ┢        | ┢         | ┢   |           | ┢         | ┢        | ┢         | ┢         | ┢   |     | $\square$ |    | $\square$ |    |    |     |     |     |     |    | $\vdash$ | ┢         | ┢        | ┢          | ┢         | H         |    | H         |     | Η         | Η         |
| 180    | 0.18 | 181  |     |                |    |    |    |           |           |          |          |           |          |           |     |           | T         | t        |           |           |     |     | H         |    | Η         |    |    |     |     |     |     |    |          | $\vdash$  | t        | ┢          | ┢         | $\square$ |    | $\square$ |     | Η         |           |
| 220    | 0.22 | 221  |     |                |    |    |    |           |           |          |          | ┢         | ┢        | ┢         |     | $\square$ | F         | t        | ┢         | $\square$ | F   |     | H         |    |           |    |    |     |     |     |     |    | $\vdash$ | t         | t        | ┢          | ┢         | $\square$ |    | Π         |     | Η         |           |
| 270    | 0.27 | 271  |     |                |    |    |    |           |           |          |          | ┢         | $\vdash$ | ┢         | ┢   | ┢         | ┢         | t        | ┢         | $\square$ |     |     | H         |    | $\square$ |    |    |     |     |     |     |    | $\vdash$ | ┢         | $\vdash$ | ┢          | ┢         | $\square$ |    |           |     | Н         | $\square$ |
| 330    | 0.33 | 331  |     |                |    |    |    |           |           |          |          | $\vdash$  | $\vdash$ |           |     |           | T         | F        | $\square$ |           |     |     |           |    |           |    |    |     |     |     |     |    |          | $\square$ | F        | $\square$  | $\square$ | Π         |    | Π         |     | Н         |           |
| 390    | 0.39 | 391  |     |                |    |    |    |           |           |          |          | $\square$ |          | $\square$ |     | Γ         | T         | T        | T         |           |     |     |           |    |           |    |    |     |     |     |     |    |          | T         | T        | $\top$     | $\square$ | Π         |    | П         |     | П         | $\square$ |
| 470    | 0.47 | 471  |     |                |    |    |    |           |           |          |          |           |          | $\square$ |     |           | $\square$ | T        | $\top$    |           |     |     |           |    |           |    |    |     |     |     |     |    |          | $\square$ | T        | $\uparrow$ | $\square$ | Π         |    | Π         |     | П         | П         |
| 560    | 0.56 | 561  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           | Γ        |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          | Γ         | Γ        | Γ          |           | Π         |    | Π         |     | П         | $\square$ |
| 680    | 0.68 | 681  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           | Γ        | Γ         |           |     |     |           |    |           |    |    |     |     |     |     |    |          | Γ         |          | Γ          |           | П         |    | Π         |     | П         | $\square$ |
| 820    | 0.82 | 821  |     |                |    |    |    |           |           |          |          |           |          | Γ         |     | Γ         | Γ         | Γ        |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          | Γ         | Γ        | Γ          | Γ         | $\square$ |    | Π         |     | $\square$ | $\square$ |
| 1000   | 1.00 | 102  |     |                |    |    |    |           |           |          |          | Γ         | Γ        |           |     |           |           | Γ        |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          | Γ         | Γ        | Γ          | Γ         |           |    | П         |     | $\square$ | $\square$ |
| 1200   | 1.2  | 122  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           |          |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           |           |    |           |     |           |           |
| 1500   | 1.5  | 152  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           |          |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           |           |    | $\Box$    |     |           | $\Box$    |
| 1800   | 1.8  | 182  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           |          |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           |           |    | $\Box$    |     |           | $\Box$    |
| 2200   | 2.2  | 222  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           |          |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           |           |    | $\Box$    |     |           |           |
| 2700   | 2.7  | 272  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           |          |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           |           |    | $\Box$    |     |           | $\Box$    |
| 3300   | 3.3  | 332  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           |          |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           |           |    | $\Box$    |     |           |           |
| 3900   | 3.9  | 392  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           |          |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           |           |    | $\Box$    |     |           |           |
| 4700   | 4.7  | 472  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           |          |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           |           |    |           |     |           |           |
| 5600   | 5.6  | 562  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           |          |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           |           |    | $\square$ |     |           |           |
| 6800   | 6.8  | 682  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           |          |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           |           |    | $\Box$    |     |           |           |
| 8200   | 8.2  | 822  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           |          |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           |           |    | $\Box$    |     |           |           |
| 10000  | 10   | 103  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           | L        |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           |           |    | $\square$ |     |           |           |
| 12000  | 12   | 123  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           | L        |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           |           |    | Ц         |     |           |           |
| 15000  | 15   | 153  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           | L        |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           |           |    | Ц         |     |           |           |
| 18000  | 18   | 183  |     |                |    |    |    |           |           |          |          |           | L        |           |     |           |           | L        |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           |           |    | Ц         |     |           |           |
| 22000  | 22   | 223  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           | L        |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           | L        |            |           |           |    | Ц         |     |           |           |
| 27000  | 27   | 273  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           |          |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           |           |    |           |     |           |           |
| 33000  | 33   | 333  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           |          |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           |           |    | Ц         |     |           |           |
| 39000  | 39   | 393  |     |                |    |    |    | $\square$ |           |          |          |           |          |           |     |           |           |          |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           |           |    |           |     |           |           |
| 47000  | 47   | 473  |     |                |    |    |    |           | Ц         |          |          |           |          |           |     |           |           |          |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           |           |    |           |     |           |           |
| 56000  | 56   | 563  |     |                |    |    |    | Ц         |           |          |          |           |          |           |     |           |           |          |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           | μ         |    |           |     |           |           |
| 68000  | 68   | 683  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           |          |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           | $\square$ |    |           |     |           |           |
| 82000  | 82   | 823  |     |                |    |    | Ц  |           | Ц         |          |          |           |          |           |     |           |           |          |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           | $\vdash$  |    | Ц         |     |           |           |
| 100000 | 100  | 104  |     |                | _  |    |    |           |           |          |          | $\vdash$  | $\vdash$ | $\vdash$  |     |           | $\vdash$  |          | $\vdash$  |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           | $\vdash$  |    |           |     | $\square$ | Ц         |
| 120000 | 120  | 124  |     | $ \rightarrow$ |    |    |    | $\square$ |           |          |          | $\vdash$  | $\vdash$ | $\vdash$  |     |           | $\vdash$  | $\vdash$ | $\vdash$  | $\vdash$  |     |     |           |    |           |    |    |     |     |     |     |    |          | $\vdash$  |          | 1          | $\vdash$  | $\vdash$  |    |           |     | $\square$ | Ц         |
| 150000 | 150  | 154  |     |                |    |    |    | $\square$ | $\square$ |          | <u> </u> | $\vdash$  | <u> </u> |           |     |           |           | ┞        | $\vdash$  |           |     |     | $\square$ |    | $\square$ |    |    |     |     |     |     |    |          |           |          | -          | $\vdash$  | $\vdash$  |    |           |     | $\square$ | Щ         |
| 180000 | 180  | 184  |     |                | _  |    |    | $\square$ | Ц         | <u> </u> | <u> </u> | ⊢         | $\vdash$ |           |     | $\vdash$  |           | ┞        |           | $\vdash$  |     |     | $\square$ |    | $\square$ |    |    |     |     |     |     |    |          |           |          | -          | $\vdash$  | $\vdash$  |    |           |     | $\vdash$  | Щ         |
| 220000 | 220  | 224  |     |                |    |    |    |           |           |          |          |           |          |           |     |           |           |          |           |           |     |     |           |    |           |    |    |     |     |     |     |    |          |           |          |            |           |           |    |           |     |           |           |



#### **Electrical Parameters**

As detailed in the KEMET Surface Mount Catalog F3102 for X7R, with following specific requirements based on room temperature (25°C) parameters:

- Operating Range: -55°C to +125°C, with no-bias capacitance shift limited to ± 15% over that range.
- Insulation Resistance (IR) measured after 2 minutes at rated voltage @ 25°C: Limit is 1,000 megohm microfarads or 100 gigohm, whichever is less.
- Capacitance and Dissipation Factor (DF) measured at 1kHz and 1 Vrms. DF Limits are:

| 50 - 250 Volts | 2.5% |
|----------------|------|
| 16 - 25 Volts  | 3.5% |
| 6.3 - 10 Volts | 5.0% |

#### **Soldering Process**

These components are suitable for reflow and wave soldering. All parts incorporate the standard KEMET barrier layer of pure nickel, with an overplate of pure tin to provide excellent solderability as well as resistance to leaching.

#### Marking

These chips will be supplied unmarked. If required, they can be laser-marked as an extra option. Details on the marking format are included in KEMET Surface Mount catalog F3102.

Qualification/Certification

AEC-Q200 Rev. C - Automotive RoHS 6 - 100% tin termination

In general, the information in the KEMET Surface Mount catalog F3102 applies to these capacitors. The information in this bulletin supplements that in the catalog.

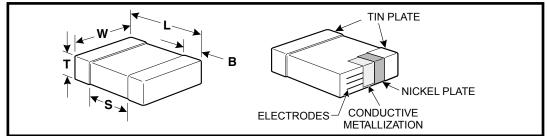


## CERAMIC OPEN MODE CAPACITORS KEN



#### **FEATURES**

KEMET's Open Mode Ceramic Surface Mount Capacitor is designed to significantly minimize the probability of a low IR or Short Circuit Condition when forced to failure in a board flex situation. This reduces the potential for causing catastrophic failures. This product is RoHS Compliant.


#### **Applications:**

- Input side filtering (power plane/bus)
- High current applications (battery line)
- Circuits that cannot be fused to open when short circuits occur due to flex cracks

#### Markets:

- Automotive
  - All applications connected directly to the battery
  - Conversion to 42V power system
- Power Conversion
  - Raw power input side filtering

#### **OUTLINE DRAWING**



#### TABLE 1 - DIMENSIONS - MILLIMETERS (INCHES)

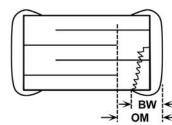
| Metric<br>Size Code | EIA Size<br>Code | L - Length              | W - Width                | B - Bandwidth            | Separation  |
|---------------------|------------------|-------------------------|--------------------------|--------------------------|-------------|
| 2012                | 0805             | 2.0 (.079) ± .20 (.008) | 1.25 (.049) ± 0.2 (.008) | 0.50 (.02) ± .25 (.010)  | 0.75 (.030) |
| 3216                | 1206             | 3.2 (.126) ± .20 (.008) | 1.6 (.063) ± 0.2 (.008)  | 0.50 (.02) ± .25 (.010)  | N/A         |
| 3225                | 1210             | 3.2 (.126) ± .20 (.008) | 2.5 (.098) ± 0.2 (.008)  | 0.50 (.02) ± .25 (.010)  | N/A         |
| 4532                | 1812             | 4.5 (.177) ± 0.3 (.012) | 3.2 (.126) ± 0.3 (.012)  | 0.60 (.024) ± .35 (.014) | N/A         |

Note: For thickness dimensions, see Table 2.

#### **CAPACITOR ORDERING INFORMATION**






 Voltage

 2 = 200V
 5 = 50V

 1 = 100V
 3 = 25V

 4 = 16V

#### **OPEN-MODE INTERNAL DESIGN**



The open-mode dimension (OM) exceeds the termination bandwidth dimensions: OM >BW



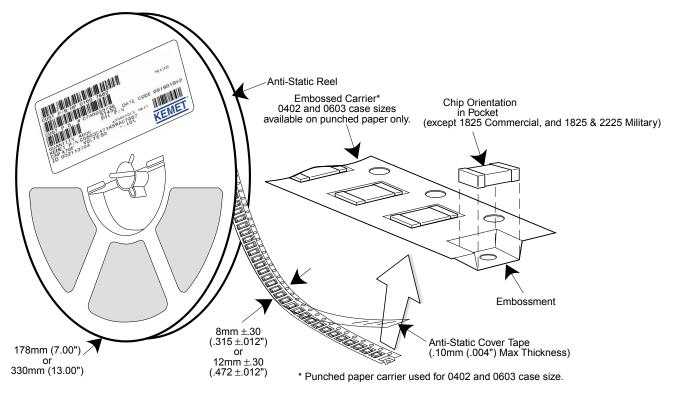
**KENET** CHARGED: CERAMIC OPEN MODE CAPACITORS

| Cap        |          | 0805     |          |          |          |     |     | 120 | 6    |      |          |      | 1210 |      |      |     | 1   | 812  |          |
|------------|----------|----------|----------|----------|----------|-----|-----|-----|------|------|----------|------|------|------|------|-----|-----|------|----------|
| Code       | 16V      | 25V      | 50V      | 100V     | 200V     | 16V | 25V | 50V | 100V | 200V | 16V      | 25V  | 50V  | 100V | 200V | 25V | 50V | 100V | 200\     |
| 102        | DD       | DD       | DD       | DD       | DD       |     |     |     |      |      |          |      |      |      |      |     |     |      |          |
| 122        | DD       | DD       | DD       | DD       | DD       |     |     |     |      |      |          |      |      |      |      |     |     |      |          |
| 152        | DD       | DD       | DD       | DD       | DD       |     |     |     |      |      |          |      |      |      |      |     |     |      | 1        |
| 182        | DD       | DD       | DD       | DD       | DD       |     |     |     |      |      |          |      |      |      |      |     |     |      |          |
| 222        | DD       | DD       | DD       | DD       | DD       |     |     |     |      |      |          |      |      |      |      |     |     |      |          |
| 272        | DD       | DD       | DD       | DD       | DD       |     |     |     |      |      |          |      |      |      |      |     |     |      |          |
| 332        | DD       | DD       | DD       | DD       | DD       |     |     |     |      |      |          |      |      |      |      |     |     |      |          |
| 392        | DD       | DD       | DD       | DD       | DD       |     |     |     |      |      |          |      |      |      |      |     |     |      |          |
| 472        | DD       | DD       | DD       | DD       | DD       |     |     |     |      |      |          |      |      |      |      |     |     |      |          |
| 562        | DD       | DD       | DD       | DD       | DD       |     |     |     |      |      |          |      |      |      |      |     |     |      |          |
| 682        | DD       | DD       | DD       | DD       | DD       |     |     |     |      |      |          |      |      |      |      |     |     |      |          |
| 822        | DD       | DD       | DD       | DD       | DD       |     |     |     |      |      |          |      |      |      |      |     |     |      |          |
| 103        | DD       | DD       | DD<br>DD | DD       | DD       |     |     |     |      |      |          |      |      |      |      |     |     |      | _        |
| 123<br>153 | DD       | DD<br>DD | DD       | DD<br>DD | DG<br>DG |     |     |     |      |      |          |      |      |      |      |     |     |      |          |
| 183        | DD<br>DD | DD       | DD       | DD       | DG       |     |     |     |      | EC   |          |      |      |      |      |     |     |      |          |
| 223        | DD       | DD       | DD       | DD       |          |     |     |     |      | EC   |          |      |      |      |      |     |     |      | —        |
| 273        | DD       | DD       | DD       | DG       |          |     |     |     |      | EC   |          |      |      |      |      |     |     |      | —        |
| 333        | DD       | DD       | DD       | DG       |          |     |     |     |      | EC   |          |      |      |      |      |     |     |      |          |
| 393        | DD       | DD       | DD       | DG       |          |     |     |     |      | EC   |          |      |      |      |      |     |     |      |          |
| 473        | DD       | DD       | DD       | DE       |          | EC  | EC  | EC  | EC   | EG   |          |      |      |      |      |     |     |      | GB       |
| 563        | DD       | DD       | DD       |          |          | ĒČ  | EC  | EC  | EC   | EG   |          |      |      |      |      |     |     |      | GB       |
| 683        | DD       | DD       | DG       | DG       |          | EC  | EC  | EC  | EC   | EG   |          |      |      |      | FD   |     |     |      | GB       |
| 823        | DD       | DD       | DG       |          |          | EC  | EC  | EC  | EC   | EG   |          |      |      |      | FD   |     |     |      | GB       |
| 104        | DG       | DG       | DG       |          |          | EC  | EC  | EC  | EC   | EG   | FD       | FD   | FD   | FD   | FG   | GB  | GB  | GB   | GB       |
| 124        | DG       | DG       |          |          |          | EC  | EC  | EC  | EC   |      | FD       | FD   | FD   | FD   | FG   | GB  | GB  | GB   | GB       |
| 154        | DG       | DG       |          |          |          | EC  | EC  | EC  | EG   |      | FD       | FD   | FD   | FD   | FH   | GB  | GB  | GB   | GB       |
| 184        | DG       | DG       |          |          |          | EC  | EC  | EC  | EG   |      | FD       | FD   | FD   | FD   | FH   | GB  | GB  | GB   | GB       |
| 224        | DG       | DD       | DG       |          |          | EC  | EC  | EC  | ED   |      | FD       | FD   | FD   | FG   | FJ   | GB  | GB  | GB   | GC       |
| 274        | DD       | DD       |          |          |          | EC  | EC  | EC  |      |      | FD       | FD   | FD   | FG   |      | GB  | GB  | GB   | GF       |
| 334        | DG       | DG       |          |          |          | EG  | EG  | EG  | EG   |      | FD       | FD   | FD   | FH   |      | GB  | GB  | GB   | GK       |
| 394        | DG       | DG       |          |          |          | EG  | EG  |     |      |      | FD       | FD   | FG   | FH   |      | GB  | GB  | GB   | GL       |
| 474        | DE       | DG       |          |          |          | EG  | EG  | EC  |      |      | FD       | FD   | FG   | FJ   |      | GB  | GB  | GC   | L        |
| 564        | -        |          |          | L        | I        | EG  |     |     |      |      | FD       | FD   | FG   | FR   |      | GB  | GB  | GD   | <u> </u> |
| 684        | DG       |          |          | ļ        | l        | EG  |     |     |      |      | FD       | FG   | FH   | FR   |      | GD  | GD  | GF   | <u> </u> |
| 824        |          |          |          |          | <u> </u> | EG  | 50  |     |      |      | FD       | FG   | FJ   | 50   |      | GD  | GD  | GK   | <u> </u> |
| 105        |          |          |          |          |          | EG  | EC  | EH  |      |      | FD       | FH   | FJ   | FQ   |      | GN  | GN  | GM   |          |
| 125<br>155 | +        |          |          |          |          |     |     |     |      |      | FG<br>FH |      |      |      |      |     |     |      | <u> </u> |
| 155        |          |          |          |          |          |     |     |     |      |      | FH       |      | I    |      |      |     |     |      | <u> </u> |
| 225        | +        |          |          |          |          | EC  | EH  |     |      |      | FH       |      | FM   |      |      |     |     |      |          |
| 475        | +        |          |          |          |          | EH  |     |     |      |      | FG       | FM   |      |      |      |     |     |      |          |
| 685        | +        |          |          |          |          |     |     |     |      |      | гG       | FIVI |      |      |      |     |     |      | <u> </u> |

#### TABLE 2 X7R DIELECTRIC CAPACITANCE RANGE AND THICKNESS TARGETS (mm)

#### THICKNESS AND PACKAGING INFORMATION

| Thickness<br>Code | Series | Dimension  | 7"<br>Reel Qty. | 13"<br>Reel Qty. |
|-------------------|--------|------------|-----------------|------------------|
| DD                | 0805   | .90 ± .10  | 4000            | 10000            |
| DE                | 0805   | 1.00 ± .10 | 2500            | 10000            |
| DG                | 0805   | 1.25 ± .15 | 2500            | 10000            |
| EC                | 1206   | .90 ± .10  | 4000            | 10000            |
| ED                | 1206   | 1.00 ± .10 | 2500            | 10000            |
| EG                | 1206   | 1.60 ± .15 | 2000            | 8000             |
| EH                | 1206   | 1.60 ± .20 | 2000            | 8000             |
| FD                | 1210   | .95 ± .10  | 4000            | 10000            |
| FG                | 1210   | 1.25 ± .15 | 2500            | 10000            |
| FH                | 1210   | 1.55 ± .15 | 2000            | 8000             |
| FJ                | 1210   | 1.85 ± .20 | 2000            | 8000             |
| FM                | 1210   | 1.70 ± .20 | 2000            | 8000             |
| FR                | 1210   | 2.25 ± .20 | 2000            | 8000             |
| FQ                | 1210   | 2.5 ± .20  | 1500            | 8000             |
| GB                | 1812   | 1.0 ± .10  | 1000            | 4000             |
| GC                | 1812   | 1.1 ± .10  | 1000            | 4000             |
| GD                | 1812   | 1.25 ± .15 | 1000            | 4000             |
| GF                | 1812   | 1.50 ± .15 | 1000            | 4000             |
| GK                | 1812   | 1.60 ± .20 | 1000            | 4000             |
| GL                | 1812   | 1.90 ± .20 | 1000            | 4000             |
| GM                | 1812   | 2.00 ± .20 | 1000            | 4000             |
| GN                | 1812   | 1.70 ± .20 | 1000            | 4000             |


## **CERAMIC CHIP CAPACITORS**

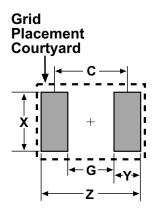


**Packaging Information** 

#### Tape & Reel Packaging

KEMET offers Multilayer Ceramic Chip Capacitors packaged in 8mm and 12mm plastic tape on 7" and 13" reels in accordance with EIA standard 481-1: Taping of surface mount components for automatic handling. This packaging system is compatible with all tape fed automatic pick and place systems. See page 78 for details on reeling quantities for commercial chips and page 87 for MIL-PRF-55681 chips.




Case Sizes  $\leq$  1210 are 8 mm tape with 4 mm pitch.

Case Sizes > 1210 are 12 mm tape with 8 mm pitch

Note: TU suffix represents tape and reel packaging of marked components.

TM suffix represents tape and reel packaging of marked components.

#### SURFACE MOUNT LAND DIMENSIONS - CERAMIC CHIP CAPACITORS - MM



|           |      | Ref  | low So | lder   |        | Wave Solder |      |         |        |      |  |  |  |
|-----------|------|------|--------|--------|--------|-------------|------|---------|--------|------|--|--|--|
| Dimension | Z    | G    | Х      | Y(ref) | C(ref) | Z           | G    | X       | Y(ref) | Smin |  |  |  |
| 0402      | 2.14 | 0.28 | 0.74   | 0.93   | 1.21   |             | Not  | Recomme | nded   |      |  |  |  |
| 0603      | 2.78 | 0.68 | 1.08   | 1.05   | 1.73   | 3.18        | 0.68 | 0.80    | 1.25   | 1.93 |  |  |  |
| 0805      | 3.30 | 0.70 | 1.60   | 1.30   | 2.00   | 3.70        | 0.70 | 1.10    | 1.50   | 2.20 |  |  |  |
| 1206      | 4.50 | 1.50 | 2.00   | 1.50   | 3.00   | 4.90        | 1.50 | 1.40    | 1.70   | 3.20 |  |  |  |
| 1210      | 4.50 | 1.50 | 2.90   | 1.50   | 3.00   | 4.90        | 1.50 | 2.00    | 1.70   | 3.20 |  |  |  |
| 1812      | 5.90 | 2.30 | 3.70   | 1.80   | 4.10   |             |      |         |        |      |  |  |  |
| 1825      | 5.90 | 2.30 | 6.90   | 1.80   | 4.10   |             |      |         |        |      |  |  |  |
| 2220      | 7.00 | 3.30 | 5.50   | 1.85   | 5.15   |             | Not  | Recomme | nded   |      |  |  |  |
| 2225      | 7.00 | 3.30 | 6.80   | 1.85   | 5.15   | 5.15        |      |         |        |      |  |  |  |



G = Smax - 2Jh -Th

X = Wmin + 2Js + Ts

Tt, Th, Ts = Combined tolerances

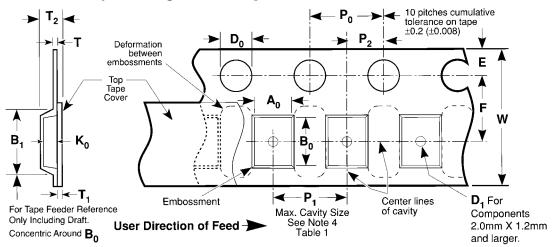


## TANTALUM, CERAMIC AND **ALUMINUM CHIP CAPACITORS**

Packaging Information

#### **Performance Notes**

- 1. Cover Tape Break Force: 1.0 Kg Minimum.
- 2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:


| Tape Width | Peel Strength               |
|------------|-----------------------------|
| 8 mm       | 0.1 Newton to 1.0 Newton (* |
| 12 mm      | 0.1 Newton to 1.3 Newton (* |

o 1.0 Newton (10g to 100g) 0.1 Newton to 1.3 Newton (10g to 130g)

The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be 165° to 180° from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of 300 ±10 mm/minute.

- 3. Reel Sizes: Molded tantalum capacitors are available on either 180 mm (7") reels (standard) or 330 mm (13") reels (with C-7280). Note that 13" reels are preferred.
- 4. Labeling: Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. Refer to EIA-556.

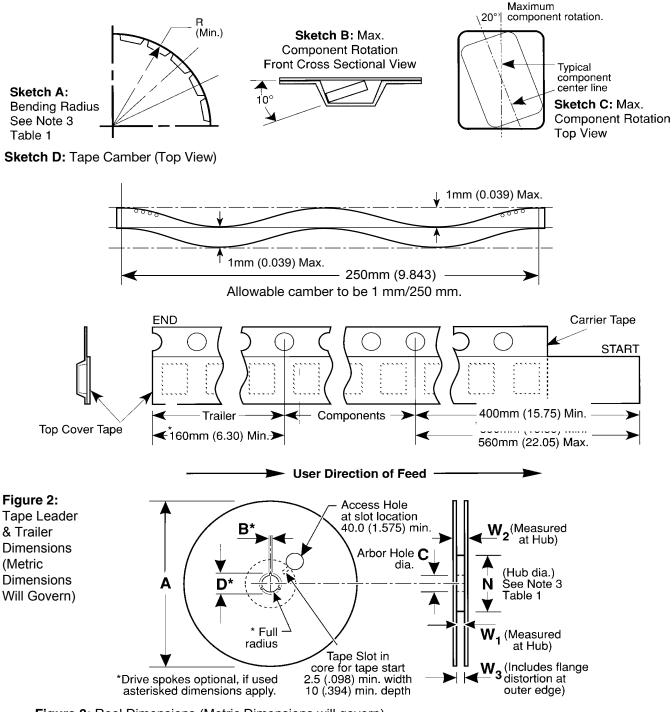
#### Embossed Carrier Tape Configuration: Figure 1



| Table 1 — EMBOSSED TAPE DIMENSIONS | (Metric will govern) |
|------------------------------------|----------------------|
|------------------------------------|----------------------|

| Constant Dimensions — Millimeters (Inches) |                      |                     |                |                             |                             |                 |                    |                              |             |  |  |  |  |
|--------------------------------------------|----------------------|---------------------|----------------|-----------------------------|-----------------------------|-----------------|--------------------|------------------------------|-------------|--|--|--|--|
| Tape Size                                  | D <sub>o</sub>       |                     | E              | P₀                          | P <sub>2</sub>              | T Max           | T₁ Max             |                              |             |  |  |  |  |
| 8 mm<br>and                                | 1.5<br>+0.10 -0      | -                   | ±0.10          | 4.0 ±0.10                   | 2.0 ±0.05                   | 0.600 0.100     |                    |                              |             |  |  |  |  |
| 12 mm                                      | (0.059<br>+0.004, -( | (0.069              | ±0.004)        | (0.157 ±0.004)              | (0.079 ±0.002)              | (0.024)         | (0.004)            |                              |             |  |  |  |  |
|                                            | ł                    |                     |                |                             |                             |                 |                    |                              |             |  |  |  |  |
| Tape Size                                  | Pitch                | B <sub>1</sub> Max. | D₁ Min.        | F                           | P <sub>1</sub>              | R Min.          | T <sub>2</sub> Max | W                            | $A_0B_0K_0$ |  |  |  |  |
|                                            |                      | Note 1              | Note 2         |                             |                             | Note 3          |                    |                              | Note 4      |  |  |  |  |
| 8 mm                                       | Single<br>(4 mm)     | 4.4                 | 1.0            | 3.5 ±0.05                   | 4.0 ±0.10                   | 25.0            | 2.5                | 8.0 ±0.30                    |             |  |  |  |  |
|                                            |                      | (0.173)             | (0.039)        | (0.138 ±0.002)              | (0.157 ±0.004)              | (0.984)         | (0.098)            | (.315 ±0.012)                |             |  |  |  |  |
| 12 mm                                      | Double<br>(8 mm)     | 8.2<br>(0.323)      | 1.5<br>(0.059) | 5.5 ±0.05<br>(0.217 ±0.002) | 8.0 ±0.10<br>(0.315 ±0.004) | 30.0<br>(1.181) | 4.6<br>(0.181)     | 12.0 ±0.30<br>(0.472 ±0.012) |             |  |  |  |  |

#### NOTES


- 1. B1 dimension is a reference dimension for tape feeder clearance only.
- 2. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other.
- 3. Tape with components shall pass around radius "R" without damage (see sketch A). The minimum trailer length (Fig. 2) may require additional length to provide R min. for 12 mm embossed tape for reels with hub diameters approaching N min. (Table 2)
- 4. The cavity defined by A<sub>0</sub>, B<sub>0</sub>, and K<sub>0</sub> shall be configured to surround the part with sufficient clearance such that the chip does not protrude beyond the sealing plane of the cover tape, the chip can be removed from the cavity in a vertical direction without mechanical restriction, rotation of the chip is limited to 20 degrees maximum in all 3 planes, and lateral movement of the chip is restricted to 0.5 mm maximum in the pocket (not applicable to vertical clearance.)

## TANTALUM, CERAMIC AND ALUMINUM CHIP CAPACITORS



**Packaging Information** 

#### **Embossed Carrier Tape Configuration (cont.)**






Table 2 – REEL DIMENSIONS (Metric will govern)

| Tape Size | A Max             | B* Min         | С                              | D* Min          | N Min                            | <b>W</b> <sub>1</sub>                         | W <sub>2</sub> Max | W <sub>3</sub>                             |
|-----------|-------------------|----------------|--------------------------------|-----------------|----------------------------------|-----------------------------------------------|--------------------|--------------------------------------------|
| 8 mm      | 330.0<br>(12.992) | 1.5<br>(0.059) | 13.0 ± 0.20<br>(0.512 ± 0.008) | 20.2<br>(0.795) | 50.0<br>(1.969)<br>See<br>Note 3 | 8.4<br>+1.5, -0.0<br>(0.331<br>+0.059, -0.0)  | 14.4<br>(0.567)    | 7.9 Min<br>(0.311)<br>10.9 Max<br>(0.429)  |
| 12 mm     | 330.0<br>(12.992) | 1.5<br>(0.059) | 13.0 ± 0.20<br>(0.512 ± 0.008) | 20.2<br>(0.795) | Table 1                          | 12.4<br>+2.0, -0.0<br>(0.488<br>+0.078, -0.0) | 18.4<br>(0.724)    | 11.9 Min<br>(0.469)<br>15.4 Max<br>(0.606) |



**CERAMIC CHIP CAPACITORS** 

**Packaging Information** 

#### Punched Carrier (Paper Tape) Configuration (Ceramic Chips Only):

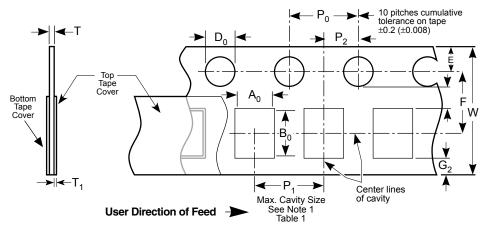


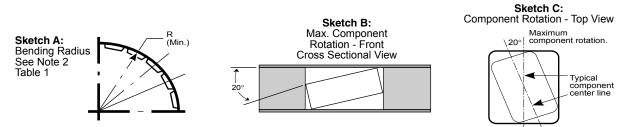

Table 1: 8 & 12mm Punched Tape (Metric Dimensions Will Govern)

**Constant Dimensions - Millimeters (Inches)** 

| Tape<br>Size       | D <sub>0</sub>                               | E | P <sub>0</sub>                        | P <sub>2</sub>                        | T <sub>1</sub> | G <sub>1</sub>         | G <sub>2</sub> | R Min.                             |
|--------------------|----------------------------------------------|---|---------------------------------------|---------------------------------------|----------------|------------------------|----------------|------------------------------------|
| 8mm<br>and<br>12mm | 1.5<br>+0.10, -0.0<br>(.059<br>+0.004, -0.0) |   | $4.0 \pm 0.10$<br>(.157 $\pm 0.004$ ) | $2.0 \pm 0.05$<br>(.079 $\pm 0.002$ ) | (.004)         | 0.75<br>(.030)<br>Min. |                | 25 (.984)<br>See Note 2<br>Table 1 |

#### Table 1: 8 & 12mm Punched Tape (Metric Dimensions Will Govern)

Variable Dimensions - Millimeters (Inches)

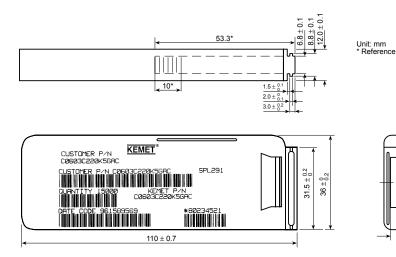

| Tape<br>Size            | P <sub>1</sub>                                                         | F                           | W                                    | A <sub>0</sub> B <sub>0</sub> | т                                                                                |
|-------------------------|------------------------------------------------------------------------|-----------------------------|--------------------------------------|-------------------------------|----------------------------------------------------------------------------------|
| 8mm<br>1/2<br>Pitch     | 2.0 ± 0.10<br>(.079 ±.004)<br>See Require-<br>ments<br>Section 3.3 (d) | 3.5 ± 0.05<br>(.138 ± .002) | $8.0 \pm 0.3$<br>(.315 $\pm 0.012$ ) | See Note 1<br>Table 1         | 1.1mm (.043)<br>Max. for Paper<br>Base Tape and<br>1.6mm (.063)<br>Max. for Non- |
| 8mm                     | $\begin{array}{c} 4.0 \pm 0.10 \\ (0.157 \pm .004) \end{array}$        |                             |                                      |                               | Paper Base<br>Compositions.                                                      |
| 12mm                    | 4.0 ± 0.10<br>(0.157 ± .004)                                           | $5.5\pm0.05$                | $12.0\pm0.3$                         |                               | See Note 3.                                                                      |
| 12mm<br>Double<br>Pitch | $\begin{array}{c} 8.0 \pm 0.10 \\ (0.315 \pm .004) \end{array}$        | (.217 ± .002)               | (.472 ± .012)                        |                               |                                                                                  |

#### Note:

1.  $A_0$ ,  $B_0$  and T determined by the maximum dimensions to the ends of the terminals extending from the body and/or the body dimensions of the component. The clearance between the ends of the terminals or body of the component to the sides and depth of the cavity ( $A_0$ ,  $B_0$  and T) must be within 0.05mm (.002) minimum and 0.50mm (.020) maximum. The clearance allowed must also prevent rotation of the component within the cavity of not more than 20 degrees (see sketches A and B).

2. Tape with components shall pass around radius "R" without damage.

3. KEMET nominal thicknesses are: 0402 = 0.6mm and all others 0.95mm minimum.






## **CERAMIC CHIP CAPACITORS**

Packaging Information

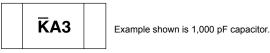
#### Bulk Cassette Packaging (Ceramic Chips only) (Meets Dimensional Requirements IEC-286-6 and EIAJ 7201)



## Table 2 – Capacitance Values Available In Bulk Cassette Packaging

|    |              |            |                              | •                                      | •                               |
|----|--------------|------------|------------------------------|----------------------------------------|---------------------------------|
|    | Case<br>Size | Dielectric | Voltage                      | Min.<br>Cap<br>Value                   | Max.<br>Cap<br>Value            |
|    | 0402         | All        | All                          | All                                    | All                             |
|    | 0603         | All        | All                          | All                                    | All                             |
|    | 0805         | C0G        | 200<br>100<br>50             | 109<br>109<br>109                      | 181<br>331<br>102               |
|    |              | X7R        | 200<br>100<br>50<br>25<br>16 | 221<br>221<br>221<br>221<br>221<br>221 | 392<br>103<br>273<br>104<br>104 |
| 0* |              | Y5V        | 25<br>16                     | 104<br>104                             | 224<br>224                      |

#### Table 1 – Capacitor Dimensions for Bulk Cassette Packaging – Millimeters

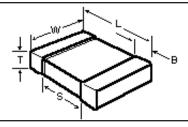

| Metric<br>Size<br>Code | EIA<br>Size<br>Code  | Length<br>L    | Width<br>W                                                                   | Thickness<br>T                                                           | Bandwidth<br>B                          | Minimum<br>Separation<br>S | Number of<br>Pcs/Cassette  |
|------------------------|----------------------|----------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------|----------------------------|----------------------------|
| 1005<br>1608<br>2012   | 0402<br>0603<br>0805 | $1.6 \pm 0.07$ | $\begin{array}{c} 0.5 \pm 0.05 \\ 0.8 \pm 0.07 \\ 1.25 \pm 0.10 \end{array}$ | $\begin{array}{c} 0.5 \pm .05 \\ 0.8 \pm .07 \\ 0.6 \pm .10 \end{array}$ | 0.2 to 0.4<br>0.2 to 0.5<br>0.5 to 0.75 | 0.3<br>0.7<br>0.75         | 50,000<br>15,000<br>10,000 |

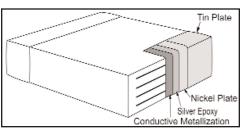
Terminations: KEMET nickel barrier layer with a tin overplate.

#### CAPACITOR MARKING TABLE (Marking Optional - Not Available for 0402 Size or Y5V Dielectric)

| Numeral            |      |     | Capad | citance | e (pF) Fo | or Various | Numeral Ic | lentifiers |            |
|--------------------|------|-----|-------|---------|-----------|------------|------------|------------|------------|
| Alpha<br>Character | 9    | 0   | 1     | 2       | 3         | 4          | 5          | 6          | 7          |
| A                  | 0.10 | 1.0 | 10    | 100     | 1000      | 10,000     | 100,000    | 1,000,000  | 10,000,000 |
| В                  | 0.11 | 1.1 | 11    | 110     | 1100      | 11,000     | 110,000    | 1,100,000  | 11,000,000 |
| С                  | 0.12 | 1.2 | 12    | 120     | 1200      | 12,000     | 120,000    | 1,200,000  | 12,000,000 |
| D                  | 0.13 | 1.3 | 13    | 130     | 1300      | 13,000     | 130,000    | 1,300,000  | 13,000,000 |
| E                  | 0.15 | 1.5 | 15    | 150     | 1500      | 15,000     | 150,000    | 1,500,000  | 15,000,000 |
| F                  | 0.16 | 1.6 | 16    | 160     | 1600      | 16,000     | 160,000    | 1,600,000  | 16,000,000 |
| G                  | 0.18 | 1.8 | 18    | 180     | 1800      | 18,000     | 180,000    | 1,800,000  | 18,000,000 |
| н                  | 0.20 | 2.0 | 20    | 200     | 2000      | 20,000     | 200,000    | 2,000,000  | 20,000,000 |
| J                  | 0.22 | 2.2 | 22    | 220     | 2200      | 22,000     | 220,000    | 2,200,000  | 22,000,000 |
| К                  | 0.24 | 2.4 | 24    | 240     | 2400      | 24,000     | 240,000    | 2,400,000  | 24,000,000 |
| L                  | 0.27 | 2.7 | 27    | 270     | 2700      | 27,000     | 270,000    | 2,700,000  | 27,000,000 |
| M                  | 0.30 | 3.0 | 30    | 300     | 3000      | 30,000     | 300,000    | 3,000,000  | 30,000,000 |
| N                  | 0.33 | 3.3 | 33    | 330     | 3300      | 33,000     | 330,000    | 3,300,000  | 33,000,000 |
| P                  | 0.36 | 3.6 | 36    | 360     | 3600      | 36,000     | 360,000    | 3,600,000  | 36,000,000 |
| Q                  | 0.39 | 3.9 | 39    | 390     | 3900      | 39,000     | 390,000    | 3,900,000  | 39,000,000 |
| R                  | 0.43 | 4.3 | 43    | 430     | 4300      | 43,000     | 430,000    | 4,300,000  | 43,000,000 |
| S                  | 0.47 | 4.7 | 47    | 470     | 4700      | 47,000     | 470,000    | 4,700,000  | 47,000,000 |
| Т                  | 0.51 | 5.1 | 51    | 510     | 5100      | 51,000     | 510,000    | 5,100,000  | 51,000,000 |
| U                  | 0.56 | 5.6 | 56    | 560     | 5600      | 56,000     | 560,000    | 5,600,000  | 56,000,000 |
| V                  | 0.62 | 6.2 | 62    | 620     | 6200      | 62,000     | 620,000    | 6,200,000  | 62,000,000 |
| W                  | 0.68 | 6.8 | 68    | 680     | 6800      | 68,000     | 680,000    | 6,800,000  | 68,000,000 |
| X                  | 0.75 | 7.5 | 75    | 750     | 7500      | 75,000     | 750,000    | 7,500,000  | 75,000,000 |
| Y                  | 0.82 | 8.2 | 82    | 820     | 8200      | 82,000     | 820,000    | 8,200,000  | 82,000,000 |
| Z                  | 0.91 | 9.1 | 91    | 910     | 9100      | 91,000     | 910,000    | 9,100,000  | 91,000,000 |
| а                  | 0.25 | 2.5 | 25    | 250     | 2500      | 25,000     | 250,000    | 2,500,000  | 25,000,000 |
| b                  | 0.35 | 3.5 | 35    | 350     | 3500      | 35,000     | 350,000    | 3,500,000  | 35,000,000 |
| d                  | 0.40 | 4.0 | 40    | 400     | 4000      | 40,000     | 400,000    | 4,000,000  | 40,000,000 |
| е                  | 0.45 | 4.5 | 45    | 450     | 4500      | 45,000     | 450,000    | 4,500,000  | 45,000,000 |
| f                  | 0.50 | 5.0 | 50    | 500     | 5000      | 50,000     | 500,000    | 5,000,000  | 50,000,000 |
| m                  | 0.60 | 6.0 | 60    | 600     | 6000      | 60,000     | 600,000    | 6,000,000  | 60,000,000 |
| n                  | 0.70 | 7.0 | 70    | 700     | 7000      | 70,000     | 700,000    | 7,000,000  | 70,000,000 |
| t                  | 0.80 | 8.0 | 80    | 800     | 8000      | 80,000     | 800,000    | 8,000,000  | 80,000,000 |
| у                  | 0.90 | 9.0 | 90    | 900     | 9000      | 90,000     | 900,000    | 9,000,000  | 90,000,000 |

Laser marking is available as an extra-cost option for most KEMET ceramic chips. Such marking is two sided, and includes a  $\vec{K}$  to identify KEMET, followed by two characters (per EIA-198 - see table below) to identify the capacitance value. Note that marking is not available for size 0402 nor for any Y5V chip. In addition, the 0603 marking option is limited to the  $\vec{K}$ only.



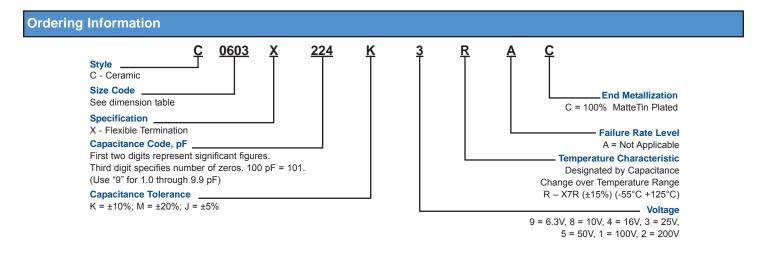

#### Surface Mount Ceramic Chip Capacitors / FT-CAP / Flexible Terminations



**Outline Drawing** 






The "Flexible Termination (FT-CAP)" capacitor is a surface mount multi-layer ceramic capacitor that incorporates a unique, flexible termination system that is integrated with standard termination materials. A conductive silver epoxy is utilized between the conductive metallization and nickel barrier finish in order to establish pliability while maintaining terminal strength, solderability and electrical performance. This technology was developed to address the primary failure mode of MLCC's, flex cracks, which are typically the result of excessive shear stresses produced during board flexure. Flexible termination technology directs board flex stress away from the ceramic body and into the conductive epoxy area, therefore mitigating flex cracks which can result in low-IR or short-circuit failures. The FT-CAP offers up to 5mm of flex-bend capability, complementing our current "Open Mode", "Floating Electrode (FE-CAP)" and "Floating Electrode with Flexible Termination (FF-CAP)" product lines by providing our customers with a complete portfolio of flex solutions.

| Dimensio         | ons – Millim        | eters (Inches)           |                           |                           |                 |
|------------------|---------------------|--------------------------|---------------------------|---------------------------|-----------------|
| EIA Size<br>Code | Metric Size<br>Code | L<br>Length              | W<br>Width                | B<br>Bandwidth            | S<br>Separation |
| 0603             | 1608                | 1.6 (.063) ± 0.20 (.008) | 0.8 (.031) ± 0.15 (.006)  | 0.35 (.014) ± 0.15 (.006) | 0.70 (.028)     |
| 0805             | 2012                | 2.1 (.083) ± 0.30 (.012) | 1.25 (.049) ± 0.20 (.008) | 0.50 (.020) ± 0.25 (.010) | 0.75 (.030)     |
| 1206             | 3216                | 3.3 (.130) ± 0.30 (.012) | 1.6 (.063) ± 0.20 (.008)  | 0.50 (.020) ± 0.25 (.010) | -               |
| 1210             | 3225                | 3.4 (.134) ± 0.40 (.016) | 2.5 (.098) ± 0.20 (.008)  | 0.50 (.020) ± 0.25 (.010) | -               |
| 1808             | 4520                | 4.7 (.185) ± 0.50 (.020) | 2.0 (.079) ± 0.20 (.008)  | 0.60 (.024) ± 0.35 (.014) | -               |
| 1812             | 4532                | 4.6 (.181) ± 0.40 (.016) | 3.2 (.126) ± 0.30 (.021)  | 0.60 (.024) ± 0.35 (.014) | -               |
| 1825             | 4564                | 4.6 (.181) ± 0.40 (.016) | 6.4 (.250) ± 0.40 (.016)  | 0.60 (.024) ± 0.35 (.014) | -               |
| 2220             | 5650                | 5.9 (.232) ± 0.75 (.030) | 5.0 (.197) ± 0.40 (.016)  | 0.60 (.024) ± 0.35 (.014) | -               |
| 2225             | 5664                | 5.9 (.232) ± 0.75 (.030) | 6.4 (.250) ± 0.40 (.016)  | 0.60 (.024) ± 0.35 (.014) | -               |

See "Capacitance Range" tables next page for capacitor chip thickness code specification. Capacitor chip thickness dimensions are detailed in the "Thickness Code Reference Chart" on page 5.



Automotive Grade Available: AEC-Q200 Rev. C RoHS-PRC (6/6) - 100% matte tin termination



#### **Electrical Parameters**

As detailed in the KEMET Surface Mount Catalog F3102 for X7R, with following specific requirements based on room temperature (25°C) parameters:

- Operating Range: -55°C to +125°C, with no-bias capacitance shift limited to ± 15% over that range.
- Insulation Resistance (IR) measured after 2 minutes at rated voltage @ 25°C: Limit is 1000 megohm microfarads or 100,000 M $\Omega$ , whichever of the two is smaller.
- Capacitance and Dissipation Factor (DF) measured under the following conditions: 1kHz and 1 Vrms if capacitance ≤ 10µF
   120Hz and 0.5 Vrms if capacitance > 10µF

#### • DF Limits are:

| 50 - 200 Volts | 2.5% |
|----------------|------|
| 16 - 25 Volts  | 3.5% |
| 6.3/10 Volts   | 5.0% |

#### Soldering Process

All parts incorporate the standard KEMET barrier layer of pure nickel, with an overplate of pure tin to provide excellent solderability as well as resistance to leaching. The recommended techniques are as follows:

- 1210-2225 case sizes Solder Reflow
- 0603/0805/1206 case sizes Solder Wave/Solder Reflow

#### Marking

These chips will be supplied unmarked. If required, they can be laser-marked as an extra option. Details on the marking format are included in KEMET Surface Mount catalog F3102.

In general, the information in the KEMET Surface Mount catalog F3102 applies to these capacitors. The information in this bulletin supplements that in the catalog.



#### Product Availability - 0603 thru 1210 Case Sizes

|                         |            |                  | F        | T-CA     | AP /     | FLE      | XIB      | LE       | TER      | MIN      | IATI     | ON       | / X7      | 'RI      | DIEL     | EC       | TRI      | C (0     | 603      | - 12     | 210 (    | Cas      | e Si     | zes      | )        |          |          |          |          |          |
|-------------------------|------------|------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|                         |            | Series           |          |          | С        | :0603    | X        |          |          |          |          | С        | 0805      | x        |          |          |          |          | С        | 1206     | x        |          |          |          |          | С        | 1210     | х        |          |          |
| Сар                     | Сар        | Voltage          | 6.3V     | 10V      | 16V      | 25V      | 50V      | 100V     | 200V     | 6.3V     | 10V      | 16V      | 25V       | 50V      | 100V     | 200V     | 6.3V     | 10V      | 16V      | 25V      | 50V      | 100V     | 200V     | 6.3V     | 10V      | 16V      | 25V      | 50V      | 100V     | 200V     |
| pF                      | Code       | Voltage<br>Code  | 9        | 8        | 4        | 3        | 5        | 1        | 2        | 9        | 8        | 4        | 3         | 5        | 1        | 2        | 9        | 8        | 4        | 3        | 5        | 1        | 2        | 9        | 8        | 4        | 3        | 5        | 1        | 2        |
|                         |            | Cap<br>Tolerance |          |          |          |          |          |          |          | F        | Product  | Availal  | bility ar | ıd Chip  | Thickn   | ess Co   | des - S  | ee "Thi  | ckness   | CodeR    | eferenc  | eChart   | ť"       |          |          |          |          |          |          |          |
| 180                     | 181        | J,K,M            | CB       | DC       | DC       | DC       | DC        | DC       | DC       | DC       |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 220                     | 221        | J,K,M            | CB       | DC       | DC       | DC       | DC        | DC       | DC       | DC       |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 270<br>330              | 271<br>331 | J,K,M<br>J,K,M   | CB<br>CB | DC<br>DC | DC<br>DC | DC<br>DC | DC<br>DC  | DC<br>DC | DC<br>DC | DC<br>DC |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 390                     | 391        | J,K,M            | СВ       | CB       | CB       | CB       | CB       | CB       | CB       | DC       | DC       | DC       | DC        | DC       | DC       | DC       |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 470                     | 471        | J,K,M            | CB       | DC       | DC       | DC       | DC        | DC       | DC       | DC       |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 560<br>680              | 561<br>681 | J,K,M<br>J,K,M   | CB<br>CB | DC<br>DC | DC<br>DC | DC<br>DC | DC<br>DC  | DC<br>DC | DC<br>DC | DC<br>DC |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 820                     | 821        | J,K,M            | CB       | DC       | DC       | DC       | DC        | DC       | DC       | DC       |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 1,000                   | 102        | J,K,M            | СВ       | СВ       | СВ       | СВ       | СВ       | СВ       | CB       | DC       | DC       | DC       | DC        | DC       | DC       | DC       | EB       |          |          |          |          |          |          |          |
| 1,200                   | 122        | J,K,M            | CB       | DC       | DC       | DC       | DC        | DC       | DC       | DC       | EB       |          |          |          |          |          |          |          |
| 1,500                   | 152<br>182 | J,K,M<br>J,K,M   | CB<br>CB | DC<br>DC | DC<br>DC | DC<br>DC | DC<br>DC  | DC<br>DC | DC<br>DC | DC<br>DC | EB<br>EB |          |          |          |          |          |          |          |
| 2,200                   | 222        | J,K,M            | CB       | DC       | DC       | DC       | DC        | DC       | DC       | DC       | EB       | FB       |
| 2,700                   | 272        | J,K,M            | СВ       | DC       | DC       | DC       | DC        | DC       | DC       | DC       | EB       | FB       |
| 3,300                   | 332        | J,K,M            | CB       | DC       | DC       | DC       | DC        | DC       | DC       | DC       | EB       | FB       |
| 3,900<br>4,700          | 392<br>472 | J,K,M<br>J,K,M   | CB<br>CB | DC<br>DC | DC<br>DC | DC<br>DC | DC<br>DC  | DC<br>DC | DC<br>DC | DC<br>DC | EB<br>EB | FB<br>FB |
| 5,600                   | 562        | J,K,M            | CB       | DC       | DC       | DC       | DC        | DC       | DC       | DC       | EB       | FB       |
| 6,800                   | 682        | J,K,M            | СВ       | СВ       | СВ       | СВ       | СВ       | СВ       | CB       | DC       | DC       | DC       | DC        | DC       | DC       | DC       | EB       | FB       |
| 8,200                   | 822        | J,K,M            | CB       | DC       | DC       | DC       | DC        | DC       | DC       | DC       | EB       | FB       |
| 10,000                  | 103<br>123 | J,K,M<br>J,K,M   | CB<br>CB | CB<br>CB | CB<br>CB | CB<br>CB | CB<br>CB | CB<br>CB | CB       | DC<br>DC | DC<br>DC | DC<br>DC | DC<br>DC  | DC<br>DC | DC<br>DC | DC<br>DC | EB<br>EB | FB<br>FB |
| 15,000                  | 123        | J,K,M            | CB       | CB       | CB       | CB       | CB       | CB       |          | DC       | DC       | DC       | DC        | DC       | DD       | DC       | EB       | FB       |
| 18,000                  | 183        | J,K,M            | CB       | CB       | CB       | CB       | CB       | CB       |          | DC       | DC       | DC       | DC        | DC       | DD       | DC       | EB       | FB       |
| 22,000                  | 223        | J,K,M            | CB       | CB       | CB       | CB       | CB       | CB       |          | DC       | DC       | DC       | DC        | DC       | DD       | DC       | EB       | FB       |
| 27,000                  | 273        | J,K,M            | CB       | CB       | CB       | CB       | CB       | CB       |          | DC       | DC       | DC       | DC        | DC       | DD       | DE       | EB       | FB       |
| 33,000<br>39,000        | 333<br>393 | J,K,M<br>J,K,M   | CB<br>CB | CB<br>CB | CB<br>CB | CB<br>CB | CB<br>CB | CB<br>CB |          | DC<br>DC | DC<br>DC | DC<br>DC | DC<br>DC  | DC<br>DC | DD<br>DD | DE<br>DE | EB<br>EB | EB<br>EB | EB<br>EB | EB<br>EB | EB<br>EB | EB<br>EC | EB<br>EB | FB<br>FB |
| 47,000                  | 473        | J,K,M            | CB       | CB       | CB       | CB       | CB       | CB       |          | DC       | DC       | DC       | DC        | DC       | DE       | DG       | EB       | EB       | EB       | EB       | EB       | EC       | ED       | FB       | FB       | FB       | FB       | FB       | FB       | FC       |
| 56,000                  | 563        | J,K,M            | CB       | CB       | CB       | CB       | CB       |          |          | DD       | DD       | DD       | DD        | DD       | DE       | DG       | EB       | EB       | EB       | EB       | EB       | EB       | ED       | FB       | FB       | FB       | FB       | FB       | FB       | FC       |
| 68,000<br>82,000        | 683<br>823 | J,K,M<br>J,K,M   | CB<br>CB | CB<br>CB | CB<br>CB | CB<br>CB | CB<br>CB |          |          | DD<br>DD | DD<br>DD | DD<br>DD | DD<br>DD  | DD<br>DD | DE<br>DE |          | EB<br>EB | EB<br>EB | EB<br>EB | EB<br>EB | EB<br>EB | EB<br>EB | ED<br>ED | FB<br>FB | FB<br>FB | FB<br>FB | FB<br>FB | FB<br>FB | FB<br>FC | FC<br>FF |
| 100,000                 | 104        | J,K,M            | CB       | CB       | CB       | CB       | CB       |          |          | DD       | DD       | DD       | DD        | DD       | DE       |          | EB       | EB       | EB       | EB       | EB       | EB       | EM       | FB       | FB       | FB       | FB       | FB       | FD       | FG       |
| 120,000                 | 124        | J,K,M            | СВ       | СВ       | СВ       | СВ       | CB       |          |          | DC       | DC       | DC       | DC        | DD       | DG       |          | EC       | EC       | EC       | EC       | EC       | EC       | EM       | FB       | FB       | FB       | FB       | FB       | FD       |          |
| 150,000                 | 154        | J,K,M            | CB       | CB       | CB       | CD       | CD       |          |          | DC       | DC       | DC       | DC        | DD       | DG       |          | EC       | EC       | EC       | EC       | EC       | EC       | EG       | FC       | FC       | FC       | FC       | FC       | FD       |          |
| 180,000<br>220,000      | 184<br>224 | J,K,M<br>J,K,M   | CB<br>CB | CB<br>CB | CB<br>CB | CD       |          |          |          | DC<br>DC | DC<br>DC | DC<br>DC | DC<br>DC  | DD<br>DD | DG<br>DG |          | EC<br>EC | EC<br>EC | EC<br>EC | EC<br>EC | EC<br>EC | EC<br>EC |          | FC<br>FC | FC<br>FC | FC<br>FC | FC<br>FC | FC<br>FC | FD<br>FD |          |
| 270,000                 | 274        | J,K,M            | CB       | CB       | CB       | 00       |          |          |          | DD       | DD       | DD       | DD        | DD       | 00       |          | EB       | EB       | EB       | EB       | EC       | EM       |          | FC       | FC       | FC       | FC       | FC       | FD       |          |
| 330,000                 | 334        | J,K,M            | СВ       | СВ       | СВ       |          |          |          |          | DD       | DD       | DD       | DD        | DD       |          |          | EB       | EB       | EB       | EB       | EC       | EG       |          | FD       | FD       | FD       | FD       | FD       | FD       |          |
| 390,000                 | 394        | J,K,M            | CB       | CB       | CB       |          |          |          |          | DG       | DG       | DG       | DG        | DE       |          |          | EB       | EB       | EB       | EB       | EC       | EG       |          | FD       | FD       | FD       | FD       | FD       | FD       |          |
| 470,000 560,000         | 474<br>564 | J,K,M<br>J,K,M   | CB       | CB       | CB       |          |          |          |          | DD<br>DD | DD<br>DD | DD<br>DD | DD<br>DG  | DE<br>DH |          |          | EC<br>ED | EC<br>ED | EC<br>ED | EC<br>ED | EC<br>EC | EG       |          | FD<br>FD | FD<br>FD | FD<br>FD | FD<br>FD | FD<br>FD | FD<br>FF |          |
| 680,000                 | 684        | J,K,M            |          |          |          |          |          |          |          | DD       | DD       | DD       | DG        | DH       |          |          | EE       | EE       | EE       | EE       | ED       |          |          | FD       | FD       | FD       | FD       | FD       | FG       |          |
| 820,000                 | 824        | J,K,M            |          |          |          |          |          |          |          | DD       | DD       | DD       | DG        |          |          |          | EF       | EF       | EF       | EF       | ED       |          |          | FF       | FF       | FF       | FF       | FF       | FL       |          |
| 1,000,000               | 105        | J,K,M            |          |          |          |          |          |          |          | DD       | DD       | DD       | DG        |          |          |          | EF       | EF       | EF       | EG       | ED       |          |          | FH       | FH       | FH       | FH       | FH       | FM       |          |
| 1,200,000               | 125<br>155 | J,K,M<br>J,K,M   | -        |          |          |          |          |          |          | DE<br>DG | DE<br>DG | DE<br>DG | -         | -        |          |          | ED<br>EF | ED<br>EF | ED<br>EF | EG<br>EG | EH<br>EH |          |          | FH<br>FH | FH<br>FH | FH<br>FH | FH<br>FH | FG<br>FG |          |          |
| 1,800,000               | 185        | J,K,M            | -        |          |          |          |          | -        |          | DG       | DG       | DG       |           |          | -        | -        | EF       | EF       | EF       | EF       | EH       |          |          | FH       | FH       | FH       | FH       | FG       |          | -        |
| 2,200,000               | 225        | J,K,M            |          |          |          |          |          |          |          | DG       | DG       | DG       |           |          |          |          | ED       | ED       | ED       | EF       | EH       |          |          | FJ       | FJ       | FJ       | FJ       | FG       |          |          |
| 2,700,000               | 275        | J,K,M            |          |          |          |          |          |          |          |          |          |          |           |          |          |          | EN       | EN       | EN       | EH       |          |          |          | FE       | FE       | FE       | FG       | FH       |          |          |
| 3,300,000<br>3,900,000  | 335<br>395 | J,K,M<br>J,K,M   |          |          |          |          |          |          |          |          |          |          |           |          |          |          | ED<br>EF | ED<br>EF | ED<br>EF | EH       |          |          |          | FF<br>FG | FF<br>FG | FF<br>FG | FM<br>FG | FM<br>FK |          |          |
| 4,700,000               | 475        | J,K,M            |          |          |          |          |          |          |          |          |          |          |           |          |          |          | EF       | EF       | EF       | EH       |          |          |          | FC       | FC       | FC       | FG       | FS       |          |          |
| 5,600,000               | 565        | J,K,M            |          |          |          |          |          |          |          |          |          |          |           |          |          |          | EH       | EH       | EH       |          |          |          |          | FF       | FF       | FF       | FH       |          |          |          |
| 6,800,000               | 685        | J,K,M            |          |          |          |          |          |          |          |          |          |          |           |          |          |          | EH       | EH       | EH       |          |          |          |          | FG       | FG       | FG       | FM       |          |          |          |
| 8,200,000<br>10,000,000 | 825<br>106 | J,K,M<br>J,K,M   |          |          |          |          | <u> </u> | <u> </u> |          | -        |          |          |           |          |          |          | EH       | EH       | EH       |          |          |          |          | FH<br>FH | FH<br>FH | FH<br>FH | FK<br>FS |          |          |          |
| 12,000,000              | 126        | J,K,M            |          |          |          |          |          |          | -        | -        | -        |          |           |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          | -+       |
| 15,000,000              | 156        | J,K,M            |          |          |          |          |          |          |          |          |          |          |           |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 18,000,000              | 186        | J,K,M            |          |          |          |          |          |          |          |          |          |          |           |          |          |          |          |          |          |          |          |          |          | 50       | 50       |          |          |          |          |          |
| 22,000,000              | 226        | J,K,M<br>Voltage | 0        |          |          | 3        | 5        | 1        | 2        |          |          |          | 2         | E        | 1        | 2        | 0        | 8        | 4        | 2        | 5        | 1        | 2        | FS       | FS       |          | 2        | 5        | 4        | 2        |
| Сар                     | Сар        | Code             | 9        | 8        | 4        |          |          | 1        |          | 9        | 8        | 4        | 3         | 5<br>5   | 1        | 2        | 9        |          | 4        | 3        |          |          | 2        | 9        | 8        | 4        | 3        |          | 1        | 2        |
| pF                      | Code       | Voltage          | 6.3V     | 10V      | 16V      | 25V      | 50V      | 100V     | 200V     | 6.3V     | 10V      | 16V      | 25V       | 50V      | 100V     | 200V     | 6.3V     | 10V      | 16V      | 25V      | 50V      | 100V     | 200V     | 6.3V     | 10V      | 16V      | 25V      | 50V      | 100V     | 200V     |
| '                       |            |                  |          |          | _        |          | _        |          |          |          |          |          |           |          |          |          |          |          |          |          |          |          |          | 1        |          |          | _        |          | _        |          |

© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com

#### Product Availablity - 1808 thru 2225 Case Sizes

| C 1922*         C 192*         C 192*         C 222*         C 2225*         C 2225*         C 2225*           contace         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s         s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |          | -CAP / FLEX   |     |      |      | -    |          |                      |          | _         |         |          |          |         |          |         |      |          |          |          | ┢ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|---------------|-----|------|------|------|----------|----------------------|----------|-----------|---------|----------|----------|---------|----------|---------|------|----------|----------|----------|---|
| print         cond         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          | Series        |     | C18  | 808X |      |          | C1812X C1825X C2220X |          |           |         |          | (        | C2225   | X        |         |      |          |          |          |   |
| Image: constraint of the sector sec |            | Cap Code | Voltage       | 50V | 100V | 200V | 250V | 25V      | 50V                  | 100V     | 200V      | 50V     | 100V     | 200V     | 25V     | 50V      | 100V    | 200V | 50V      | 100V     | 200V     |   |
| 2200         222         3KM         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v         v<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |          | Voltage Code  | 5   | 1    | 2    | Α    | 3        | 5                    | 1        | 2         | 5       | 1        | 2        | 3       | 5        | 1       | 2    | 5        | 1        | 2        |   |
| 2700       372       JKM       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |          | Cap Tolerance |     |      |      | Ρ    | roduct A | vailability          | y and Ch | nip Thick | ness Co | des - Se | e "Thick | nessCoo | leRefere | enceCha | rt"  |          |          |          |   |
| 3300       332       JKM       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |          |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          |   |
| 19:00         39:2         JKM         Lo         Lo <thlo< th="">         Lo         Lo         <t< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td></t<></thlo<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |          |               | _   |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          | <u> </u> |   |
| 4700         570         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560         560 <td></td> <td></td> <td></td> <td>_</td> <td></td> <td><u> </u></td> <td><u> </u></td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |          |               | _   |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          | <u> </u> | <u> </u> | 1 |
| 5600     562     JKM     L0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          | <b></b>  |   |
| 680         682         J.K.M         LD         LD <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |          |               |     |      |      |      |          |                      |          |           |         |          | _        |         |          |         |      |          |          |          | 1 |
| 10.00         103         J.K.M         LD         LD        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |          |               |     |      |      |      | GB       | GB                   | GB       | GB        |         |          |          |         |          |         |      |          | -        |          | 1 |
| 12:00       12:3       J.K.M       LD       LD       LD       LD       CB       GB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8,200      | 822      | J,K,M         | LD  | LD   | LD   |      | GB       | GB                   | GB       | GB        |         |          |          |         |          |         |      |          | <u> </u> |          | 1 |
| 15:00       163       J.K.M       LD       LD       LD       LD       CB       GB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10,000     | 103      | J,K,M         | LD  | LD   | LD   |      | GB       | GB                   | GB       | GB        |         |          |          |         |          |         |      |          |          |          | 1 |
| 16300       1633       J.K.M       LD       LD       LO       CB       GB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |          |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          |   |
| 12:00         22:3         J.K.M         LD         LD         GB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |          |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          | 4 |
| 27.000     27.3     J.K.M     LD     LD </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>LD</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>112</td> <td>1/2</td> <td>110</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |          |               |     |      | LD   |      |          |                      |          |           | 112     | 1/2      | 110      |         |          |         |      |          |          |          | 4 |
| 33.000       33.33       J.K.M       LD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |          |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      | <u> </u> | <u> </u> | <u> </u> | 4 |
| 99.00         933         J.K.M         LD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |          |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          | <u> </u> | <u> </u> | 1 |
| 47:00       473       JKM       LD       LD       LD       C       GB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |          |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          | 1 |
| 66.000       683       J.K.M       LD       LD       C       GB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |          |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      | кс       | кс       | кс       |   |
| 68.000       68.3       J.K.M       LD       Image: Constraint of the state of th                                             |            |          |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          |   |
| 100       104       J,K,M       LD       Image: Constraint of the state of the st                                             |            |          |               | LD  |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          | 1 |
| 120       124       JKM       LD       KG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 82,000     | 823      | J,K,M         | LD  |      |      |      | GB       | GB                   | GB       | GB        | HB      | HB       | HB       | JC      | JC       | JC      | JC   | KC       | KC       | KC       | 1 |
| 150.00       154       JK.M       LD       C       GB       GG       HB       HD       HD       JC       JC       JC       JC       JK       KB       KC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100,000    | 104      |               |     |      |      |      | GB       | GB                   | GB       | GB        | HB      | HB       | HB       | JC      | JC       | JC      | JC   | KC       | KC       | KC       |   |
| 180.00       184       J.K.M       LD       Image: Constraint of the state of the                                             |            |          |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          |   |
| 330.000     334     J,K,M     I     GB     GB <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          |   |
| 330.000     334     J,K,M     I     GB     GB <td></td> <td></td> <td></td> <td>LD</td> <td></td> <td>4</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |          |               | LD  |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          | 4 |
| 330.000     334     J,K,M     I     GB     GB <td></td> <td>4</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |          |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          | 4 |
| 390,000       394       J,K,M       I       I       GB       GB       GB       GG       GG       HB       HB       HD       JC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |          |               | _   |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          | - |
| 470,000       474       J,K,M       I       I       GB       GB       GG       GG       GG       GG       GG       GG       GG       HB       HD       HD       JC       JC       JC       JC       KB       KC       KD         680,000       684       J,K,M       I       GC       GC       GC       GG       HB       HD       HD       JC       JC       JC       JF       KB       KC       KD         680,000       684       J,K,M       I       GC       GC       GG       GB       HB       HD       HD       JC       JC       JF       KB       KC       KD         820,000       155       J,K,M       I       GE       GE       GE       GG       HB       HF       HF       JC       JC       JF       KB       KC       KE         1,200,000       155       J,K,M       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I <td< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |          |               | _   |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          | - |
| 680.000       684       J,K,M       I       I       GC       GC       GC       GC       GC       HB       HD       HD       JC       JC       JD       JD       KB       KC       KD         820,000       824       J,K,M       I       I       I       GE       GE       GE       GE       HB       HF       JF       JC       JC       JF       JF       KB       KC       KE         1,000,000       155       J,K,M       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          |   |
| 680.000       684       J,K,M       I       I       GC       GC       GC       GC       GC       HB       HD       HD       JC       JC       JD       JD       KB       KC       KD         820,000       824       J,K,M       I       I       I       GE       GE       GE       GE       HB       HF       JF       JC       JC       JF       JF       KB       KC       KE         1,000,000       155       J,K,M       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          |   |
| 1.000,000     105     J.K.M     I     I     I     GE     GE     GE     GE     GE     GE     HB     HF     HF     JC     JC     JF     JF     KB     KD     KE       1,200,000     125     J.K.M     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I <td></td> <td>684</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 684      |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          |   |
| 1.200,000       125       J,K,M       Image: Marrow of the state                                    | 820,000    | 824      | J,K,M         |     |      |      |      | GE       | GE                   | GG       |           | HB      | HF       | HF       | JC      | JC       | JF      | JF   | KB       | KC       | KE       |   |
| 1,500,000       155       J,K,M       Image: constraint of the state of the s                                    | 1,000,000  |          | J,K,M         |     |      |      |      | GE       | GE                   | GG       |           |         | HF       | HF       | JC      | JC       | JF      | JF   | KB       | KD       | KE       |   |
| 1,800,000       185       J,K,M       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,200,000  | 125      |               |     |      |      |      |          |                      |          |           | HB      |          |          |         | JC       |         |      | KB       | KE       | KE       |   |
| 2200,000       225       J,K,M       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |          |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          |   |
| 2,700,000       275       J,K,M       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |          |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          |   |
| 3.300,000       335       J,K,M       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |          |               | _   |      |      |      |          |                      |          |           | HF      |          |          | JF      | JF       |         |      | KD       | <u> </u> | <u> </u> | - |
| 3.900,000       395       J,K,M       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |          |               | _   |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          | ──       | <u> </u> | - |
| 4,700,000       475       J,K,M       I       I       GK       GK       GK       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |          |               | -   |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          | <u> </u> | <u> </u> | - |
| 5,600,000     565     J,K,M     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>GK</td> <td>GK</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |          |               |     |      |      |      | GK       | GK                   |          |           |         |          |          |         |          |         |      |          |          |          |   |
| 6.800,000     685     J.K.M     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |          |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          |   |
| 8,200,000       825       J,K,M       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |          |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          |   |
| 12,000,000       126       J,K,M       Image: Code       Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |          |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          | 1 |
| 15.000.000       156       J.K.M       Image: Code       Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000,000 | 106      | J,K,M         |     |      |      |      | GK       |                      |          |           |         |          |          | JF      | JO       |         |      |          |          |          |   |
| 18.000.000       186       J,K,M       Image: Code       Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |          |               |     |      |      |      |          |                      |          |           |         |          |          |         |          |         |      |          |          |          |   |
| Voltage Code     5     1     2     A     3     5     1     2     5     1     2     5     1     2     5     1     2     5     1     2     5     1     2     5     1     2     5     1     2     5     1     2     5     1     2     5     1     2     5     1     2     5     1     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |          |               |     |      |      |      |          |                      |          |           |         |          |          | JO      |          |         |      |          |          |          |   |
| Voltage Code         5         1         2         A         3         5         1         2         5         1         2         3         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2         5         1         2 <t< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td>1.5</td><td></td><td></td><td></td><td></td><td><u> </u></td><td><u> </u></td><td>-</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |          |               | _   |      |      |      |          | <u> </u>             |          |           |         |          |          | 1.5     |          |         |      |          | <u> </u> | <u> </u> | - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22,000,000 | 226      |               | 5   | 1    | 2    | •    | 3        | 5                    | 1        | 2         | 5       | 1        | 2        |         | 5        | 1       | 2    | 5        | 1        | 2        |   |
| Cap<br>pF         Cap Code         Voltage         50         200         250         50         100         200         57         100         200         50         100         200         50         100         200         50         100         200         50         100         200         50         100         200         50         100         200         50         100         200         50         100         200         50         100         200         50         100         200         50         100         200         50         100         200         50         100         200         50         100         200         50         100         200         50         50         00         200         50         100         200         50         100         200         50         100         200         50         100         200         50         100         200         20         50         100         200         20         50         100         200         20         50         00         20         20         20         20         20         20         20         20         20         20         20         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |          | Totage Oue    |     |      |      |      |          |                      |          |           | 5       |          |          | 5       | 5        | -       |      |          | $\vdash$ |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cap<br>pF  | Cap Code | Voltage       | 50V | 100V | 200V | 250V | 25V      | 50 V                 | 100V     | 200V      | 50 V    | 100V     | 200V     | 25V     | 50V      | 100V    | 200V | 50V      | 100V     | 200V     |   |

#### Thickness Code Reference Chart

| Chip<br>Size | Thickness<br>Code | Chip Thickness<br>Range (mm) | Qty per Reel<br>7" Plastic | Qty per Reel<br>13" Plastic | Qty per Reel<br>7" Paper | Qty per Reel<br>13" Paper | Qty per Bulk<br>Cassette |
|--------------|-------------------|------------------------------|----------------------------|-----------------------------|--------------------------|---------------------------|--------------------------|
| 0603         | СВ                | 0.80 ± 0.07                  | -                          | -                           | 4,000                    | 10,000                    | 15,000                   |
| 0603         | CC                | 0.80 ± 0.10                  | -                          | -                           | 4,000                    | 10,000                    | -                        |
| 0603         | CD                | 0.80 ± 0.15                  | -                          | -                           | 4,000                    | 10,000                    | -                        |
| 0805         | DB                | 0.60 ± 0.10                  | -                          | -                           | 4,000                    | 10,000                    | 10,000                   |
| 0805         | DC                | 0.78 ± 0.10                  | -                          | -                           | 4,000                    | 10,000                    | -                        |
| 0805         | DD                | 0.90 ± 0.10                  | -                          | -                           | 4,000                    | 10,000                    | -                        |
| 0805<br>0805 | DE<br>DF          | 1.00 ± 0.10<br>1.10 ± 0.10   | 2,500 2,500                | 10,000                      | -                        | -                         | -                        |
| 0805         | DF                | 1.10 ± 0.10<br>1.25 ± 0.15   | 2,500                      | 10,000                      | -                        |                           | -                        |
| 0805         | DH                | 1.25 ± 0.15                  | 2,500                      | 10,000                      | -                        | -                         | -                        |
| 0805         | DL                | 0.95 ± 0.10                  | 4,000                      | 10,000                      | -                        | -                         | -                        |
| 1206         | EB                | 0.78 ± 0.10                  | 4,000                      | 10,000                      | 4,000                    | 10,000                    | -                        |
| 1206         | EC                | 0.90 ± 0.10                  | 4,000                      | 10,000                      | -                        | -                         | -                        |
| 1206         | ED                | 1.00 ± 0.10                  | 2,500                      | 10,000                      | -                        | -                         | -                        |
| 1206         | EE                | 1.10 ± 0.10                  | 2,500                      | 10,000                      | -                        | -                         | -                        |
| 1206         | EF                | 1.20 ± 0.15                  | 2,500                      | 10,000                      | -                        | -                         | -                        |
| 1206         | EG                | 1.60 ± 0.15                  | 2,000                      | 8,000                       | -                        | -                         | -                        |
| 1206         | EH                | 1.60 ± 0.20                  | 2,000                      | 8,000                       | -                        | -                         | -                        |
| 1206         | EJ                | 1.70 ± 0.20                  | 2,000                      | 8,000                       | -                        | -                         | -                        |
| 1206         | EK                | 0.80 ± 0.10                  | 2,000                      | 8,000                       | -                        | -                         | -                        |
| 1206         | EM                | 1.25 ± 0.15                  | 2,500                      | 10,000                      | -                        | -                         | -                        |
| 1206         | EN                | 0.95 ± 0.10                  | 4,000                      | 10,000                      | -                        | -                         | -                        |
| 1210         | FB                | 0.78 ± 0.10                  | 4,000                      | 10,000                      | -                        | -                         | -                        |
| 1210         | FC                | 0.90 ± 0.10                  | 4,000                      | 10,000                      | -                        | -                         | -                        |
| 1210<br>1210 | FD<br>FE          | 0.95 ± 0.10<br>1.00 ± 0.10   | 4,000 2,500                | 10,000                      | -                        | -                         | -                        |
| 1210         | FF                | 1.00 ± 0.10<br>1.10 ± 0.10   | 2,500                      | 10,000                      | -                        | -                         | -                        |
| 1210         | FF                | 1.10 ± 0.10<br>1.25 ± 0.15   | 2,500                      | 10,000                      | -                        | -                         | -                        |
| 1210         | FH                | 1.55 ± 0.15                  | 2,000                      | 8,000                       | -                        | -                         | -                        |
| 1210         | FJ                | 1.85 ± 0.20                  | 2,000                      | 8,000                       | -                        | -                         | -                        |
| 1210         | FK                | 2.10 ± 0.20                  | 2,000                      | 8,000                       | -                        | -                         | -                        |
| 1210         | FL                | 1.40 ± 0.15                  | 2,000                      | 8,000                       | -                        | -                         | -                        |
| 1210         | FM                | 1.70 ± 0.20                  | 2,000                      | 8,000                       | -                        | -                         | -                        |
| 1210         | FN                | 1.85 ± 0.20                  | 2,000                      | 8,000                       | -                        | -                         | -                        |
| 1210         | FO                | 1.50 ± 0.20                  | 2,000                      | 8,000                       | -                        | -                         | -                        |
| 1210         | FP                | 1.60 ± 0.20                  | 2,000                      | 8,000                       | -                        | -                         | -                        |
| 1210         | FR                | 2.25 ± 0.20                  | 2,000                      | 8,000                       | -                        | -                         | -                        |
| 1210         | FS                | 2.50 ± 0.20                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 1210         | FT                | 1.90 ± 0.20                  | 1,500                      | 4,000                       | -                        | -                         | -                        |
| 1632         | MA                | 0.80 ± 0.10                  | 4,000                      | 10,000                      | -                        | -                         | -                        |
| 1808         | LD                | 0.90 ± 0.10                  | 2,500                      | 10,000                      | -                        | -                         | -                        |
| 1808         | LA                | 1.40 ± 0.15                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 1808<br>1808 | LB<br>LC          | 1.60 ± 0.15<br>2.00 ± 0.15   | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 1808         | GB                | 2.00 ± 0.15<br>1.00 ± 0.10   | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 1812         | GC                | 1.10 ± 0.10                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 1812         | GD                | 1.25 ± 0.15                  | 1,000                      | 4,000                       |                          |                           | _                        |
| 1812         | GE                | 1.30 ± 0.10                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 1812         | GF                | 1.50 ± 0.10                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 1812         | GG                | 1.55 ± 0.10                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 1812         | GH                | 1.40 ± 0.15                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 1812         | GJ                | 1.70 ± 0.15                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 1812         | GK                | 1.60 ± 0.20                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 1812         | GL                | 1.90 ± 0.20                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 1812         | GM                | 2.00 ± 0.20                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 1812         | GN                | 1.70 ± 0.20                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 1812         | GO                | 2.50 ± 0.20                  | 500                        | -                           | -                        | -                         | -                        |
| 1825         | HB                | 1.10 ± 0.15                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 1825<br>1825 | HC<br>HD          | 1.15 ± 0.15                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 1825         | HD                | 1.30 ± 0.15<br>1.40 ± 0.15   | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 1825         | HF                | 1.40 ± 0.15<br>1.50 ± 0.15   | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 1825         | HG                | 1.60 ± 0.20                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 2220         | JB                | 1.00 ± 0.20                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 2220         | JC                | 1.10 ± 0.15                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 2220         | JD                | 1.30 ± 0.15                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 2220         | JE                | 1.40 ± 0.15                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 2220         | JF                | 1.50 ± 0.15                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 2220         | JP                | 1.60 ± 0.20                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 2220         | JG                | 1.70 ± 0.15                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 2220         | JH                | 1.80 ± 0.15                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 2220         | JO                | 2.40 ± 0.15                  | 500                        | 2,000                       | -                        | -                         | -                        |
| 2225         | KB                | 1.00 ± 0.15                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 2225         | KC                | 1.10 ± 0.15                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 2225         | KD                | 1.30 ± 0.15                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 2225         | KE                | 1.40 ± 0.15                  | 1,000                      | 4,000                       | -                        | -                         | -                        |
| 2225         | KF                | 1.60 ± 0.20                  | 1,000                      | 4,000                       | -                        | -                         | -                        |

© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com

## Tech Topics



## **Flex Crack Mitigation**

by Bill Sloka, Ceramic Technical Consultant

As part of continuous process improvement at KEMET, most failure modes caused by the capacitor manufacturing process have been systematically eliminated. Today these capacitor manufacturing-related defects are now at a partsper-billion (PPB) level. Pareto analysis of customer complaints indicates that the #1 failure mode is IR failure due to flex cracks.

#### Flex Cracks

Flex cracks have been known in PCB manufacturing for quite some time. Flex cracks are created in capacitors when board flex stress / bending stress is applied to a circuit board with ceramic components already affixed to the PCB. As the ceramic capacitor is inherently hard, non-elastic, and brittle (relative to the PCB), any bending of the board creates stress, and that stress can be transmitted through the solder joint, directly to the ceramic body. This stress must be relieved somehow – and this stress relief can result in the creation of a board flex crack (See Figure 1).

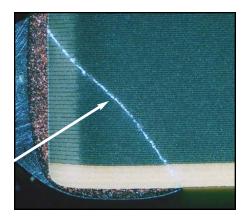



Figure 1. Typical Flex Crack

In PCB assembly, some of the sources of this stress include the following:

- Connector Assembly/Connector Use MLCC's placed close to connectors are particularly susceptible to board flex stress (See Figure 2).
- Depanelization where many small boards are assembled as one large panel that must then be separated, especially when MLCC's are located close to the edge of the PCB (See Figure 3).



Figure 2. Filter capacitor very near to thru-hole connector.

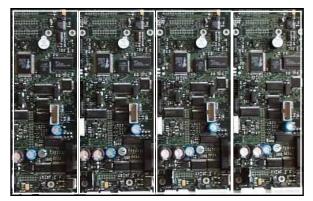



Figure 3. Board singulation can flex stress ceramic capacitors near board edge.

• Box build – assembly of a final product can involve stresses as boards are fitted together – particularly given the demands for today's thinner product offerings.

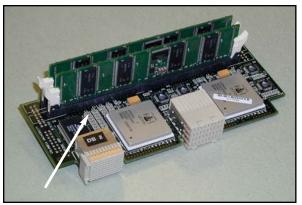



Figure 4. Parts located near connectors can be susceptible to board flex stress.

PCB assembly continues to evolve, and by carefully understanding and controlling the board assembly process, the occurrence of board flex stress can be reduced. However, these board flex stresses have not been eliminated – and in many cases the worst-case scenario is a resultant short circuit which leads to field failure. KEMET now offers a portfolio of engineered solutions to mitigate the effects of board flex stress. By creating solutions that lend themselves to open failure mode rather than short circuit failure mode, KEMET is offering a measure of protection for customers who know that short circuit failure is not an option.

#### FAQ's and Definitions

The following statements are based on extensive industry research, whitepapers, and presentations. All of these questions are answered assuming the customer is using a standard, 2-terminal MLCC.

 <u>Does a flex crack always lead to failure?</u> Answer – no; as with all cracks in MLCC's, there needs to be some type of ionic penetration or humidity along the crack path which allows current to flow between electrode plates of opposite polarity, in order for the chip to fail. (See Figure 5).

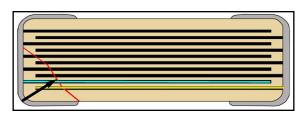



Figure 5. Yellow electrode represents (+); blue electrode represents (-); flex crack leads to short circuit.

- <u>Does it matter which direction the board is flexed?</u> Answer – no; our studies have shown that a board bent "up" or "down" leads to the formation of a board flex crack that looks the same regardless of board bend direction, all other factors being equal.
- <u>Does a Flex Crack always have the same crack signature?</u> Answer yes. There is a distinctive crack signature for board flex cracks it always starts near the edge of the termination margin, and usually extends upwards toward the termination face. The flex crack signature is distinctly different than other crack signatures in MLCC's. (See Figure 6)

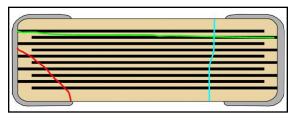



Figure 6. Red crack represents flex crack; green crack represents typical thermal shock crack; blue crack represents mechanical damage.

- 4. Are there PCB assembly process parameters that can be modified to reduce the risk of board flex cracks? Answer – yes. Studies have shown that by minimizing the amount of solder (size of solder fillet), and minimizing chip size (smaller chips are inherently more robust than larger chips), the chances of failure due to board flex cracking can be reduced.
- 5. <u>Are there ways to place parts away from "problem</u> <u>areas" on the PCB?</u> Answer – yes. By placing parts parallel to the edge of the PCB, as far away from the edge of the PCB as practical, and as far away from thru-hole connectors/screws/etc., manufacturers can reduce their risk of MLCC board flex cracks.
- 6. <u>Does KEMET ever ship capacitors with flex cracks</u>, <u>while still in the tape & reel?</u> Answer – no, flex cracks can only occur post solder attach.

#### **Board Flex Crack Solutions at KEMET**

If board flex stress cannot be eliminated, there are several options available that offer methods to mitigate the risk associated with board flex cracks. In order to offer a costeffective solution, there are several options available, based on the capacitance value selected.

• For *low* capacitance values, KEMET offers the Floating Electrode (FE-CAP) design. This is also known in the industry as a Serial Cap design, as the Floating Electrode part contains two parts in series, within a singular capacitor body. In Automotive (Clamp 30) designs, sometimes 2 distinct capacitors will be used in series on the PCB – the FE-CAP gives a designer this "two parts in series" - within a singular capacitor. This solution works by eliminating the short-circuit path between electrodes of opposite polarity (See Figure 7). Due to the sacrifice of active

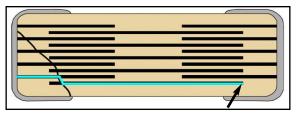



Figure 7. Flex crack does not complete circuit - no short circuit failure.

area necessitated by the creation of two serial capacitors, the Floating Electrode solution can only be used for lower capacitance values. To order this device, simply place an S for "Serial Cap" in the 6<sup>th</sup> digit of the KEMET part number.

 For customers desiring an additional mode of protection, KEMET now offers the FF-CAP (<u>F</u>loating Electrode + <u>F</u>lexible Termination – see Flexible Termination description later in this paper). To order this device, place a "Y" in the 6<sup>th</sup> digit of the KEMET part number. · For mid capacitance values, KEMET offers the Open Mode solution. The Open Mode device creates a safe zone on both ends of the capacitor (See Figure 8), so that only the innermost portion of the capacitor is active area. Any board flex crack that occurs (remember, this crack always starts within the end termination) can only cross electrodes of like polarity; thus eliminating the possibility of a short-circuit failure from a board flex crack. As with the FE-CAP, active area has been sacrificed in order to create the safe zones on both ends of the chip; thus, the Open Mode solution is only applicable for mid capacitance values. To order this device, place an "F" for "Fail Open" in the 6<sup>th</sup> digit of the KEMET part number. Open Mode can be ordered with Flexible Termination by changing the 6th digit of the KEMET Part Number to a "D".

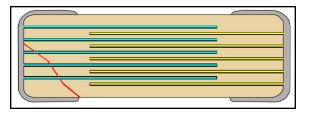



Figure 8. Blue represents (-), Yellow represents (+), flex crack only crosses electrode of like polarity.

 Finally, for high capacitance values (also called HiCV) in the industry), KEMET offers the Flexible Termination (FT-CAP). KEMET applies a special conductive silver epoxy on both end terminations, between the copper/electrode interface and the nickel/tin plating. This special epoxy layer is essentially a tearaway solution, providing a path of least resistance for board flex stress. This solution acts to steer the potential flex crack away from the ceramic body, into the more benign area of the termination (See Figure 9). Technically, Flexible Termination can be applied to any commercial SMD (Surface Mount) product, but due to additional manufacturing costs (primarily materials and labor), the Flexible Termination is more cost effective when used on HiCV devices. KEMET's Flexible Termination offers up to 5mm of board bend stress capability. To order this device, place an X for "Flexible Termination" in the 6<sup>th</sup> digit of the KEMET part number.

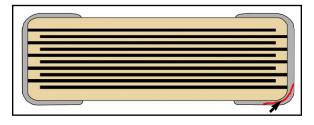



Figure 9. Flexible termination moves flex cracks to the end termination, away from the ceramic body.

#### Availability

All solutions mentioned above are available today from KEMET. As Automotive is a primary market focus for these Flex Crack solutions, KEMET has qualified all of the solutions per AEC-Q200 (documentation available upon request). For more specific information, including available capacitance values, sample requests, datasheets, etc., please visit our website:

#### http://www.kemet.com/flex

#### Conclusion

Board flex cracks have been around since the inception of SMT processing, and still represent a significant headache as measured by customer complaints, field failures, etc. By selecting an appropriate board flex mitigation product, designers now have an option when board flex stresses cannot be eliminated from the PCB manufacturing process.

#### References

"Capacitance Monitoring While Flex Testing", 1997, Jim Bergenthal and John D. Prymak, F-2110, KEMET Electronics Corporation

## **CE FLEXDESIGN**

| 2<br>3 | C0603S221J2RAC<br>C0603S222J2RAC<br>C0603S472J2RAC | 0603<br>0603 | <b>Cap.</b><br>220pF | ±5%  | 200V  | Election Electrode   |     |
|--------|----------------------------------------------------|--------------|----------------------|------|-------|----------------------|-----|
| 3      |                                                    |              |                      |      | 200 v | Floating Electrode   | X7R |
|        | C0603S472J2RAC                                     |              | 2.2nF                | ±5%  | 200V  | Floating Electrode   | X7R |
| 4      |                                                    | 0603         | 4.7nF                | ±5%  | 200V  | Floating Electrode   | X7R |
| -      | C0805S223K1RAC                                     | 0805         | 22nF                 | ±10% | 100V  | Floating Electrode   | X7R |
| 5      | C0805F223K3RAC                                     | 0805         | 22nF                 | ±10% | 25V   | Open Mode            | X7R |
| 6      | C0805S473K5RAC                                     | 0805         | 47nF                 | ±10% | 50V   | Floating Electrode   | X7R |
| 7      | C0805F473K3RAC                                     | 0805         | 47nF                 | ±10% | 25V   | Open-Mode            | X7R |
| 8      | C0603X473K1RAC                                     | 0603         | 47nF                 | ±10% | 100V  | Flexible Termination | X7R |
| 9      | C1210S563K5RAC                                     | 1210         | 56nF                 | ±10% | 50V   | Floating Electrode   | X7R |
| 10     | C0805S104K5RAC                                     | 0805         | 100nF                | ±10% | 50V   | Floating Electrode   | X7R |
| 11     | C0805F104K3RAC                                     | 0805         | 100nF                | ±10% | 25V   | Open Mode            | X7R |
| 12     | C1206X124K2RAC                                     | 1206         | 120nF                | ±10% | 200V  | Flexible Termination | X7R |
| 13     | C0805F224K3RAC                                     | 0805         | 220nF                | ±10% | 25V   | Open-Mode            | X7R |
| 14     | C0805X224K1RAC                                     | 0805         | 220nF                | ±10% | 100V  | Flexible Termination | X7R |
| 15     | C0805F474K3RAC                                     | 0805         | 470nF                | ±10% | 25V   | Open Mode            | X7R |
| 16     | C0603X474K4RAC                                     | 0603         | 470nF                | ±10% | 16V   | Flexible Termination | X7R |
| 17     | C0805X474K5RAC                                     | 0805         | 470nF                | ±10% | 50V   | Flexible Termination | X7R |
| 18     | C1206X474K1RAC                                     | 1206         | 470nF                | ±10% | 100V  | Flexible Termination | X7R |
| 19     | C0805X105K3RAC                                     | 0805         | 1uF                  | ±10% | 25V   | Flexible Termination | X7R |
| 20     | C1210X105K1RAC                                     | 1210         | 1uF                  | ±10% | 100V  | Flexible Termination | X7R |
| 21     | C1206F225K4RAC                                     | 1206         | 2.2uF                | ±10% | 16V   | Open Mode            | X7R |
| 22     | C0805X225K4RAC                                     | 0805         | 2.2uF                | ±10% | 16V   | Flexible Termination | X7R |
| 23     | C1206X225K5RAC                                     | 1206         | 2.2uF                | ±10% | 50V   | Flexible Termination | X7R |
| 24     | C1206F475K4RAC                                     | 1206         | 4.7uF                | ±10% | 16V   | Open Mode            | X7R |
| 25     | C1206X475K3RAC                                     | 1206         | 4.7uF                | ±10% | 25V   | Flexible Termination | X7R |
| 26     | C1210X475K5RAC                                     | 1210         | 4.7uF                | ±10% | 50V   | Flexible Termination | X7R |
| 27     | C1206X106K4RAC                                     | 1206         | 10uF                 | ±10% | 16V   | Flexible Termination | X7R |
| 28     | C1210X106K3RAC                                     | 1210         | 10uF                 | ±10% | 25V   | Flexible Termination | X7R |